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for the case of a uniform pressure distributed over the whole middle surface resting on 
the outline F. If the kinematic boundary conditions on F are such that the contour 
integral in (4. 9) vanishes, then the elementary work of the load (4.7) is a total variation 
of the functional. 
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The transverse sections of a shell are deformed identically under the effect of 
external forces which do not vary along the generator. In this case it is admissi- 
ble to limit oneself to a study of the state of stress of an elastic concentric ring. 
A large quantity of papers is devoted to this classical problem. Primarily the 
case of nonthin shells is treated. The exception is in the papers of Ustinov [1, 2], 
where the state of stress of a very thin ring subjected to normal forces is consi- 
dered. The stress field in a thin ring, seemingly subjected to both normal and 
tangential external forces, is also analyzed in this paper by another method. 

1. Let S designate a domain occupied by a concentric ring, and L2 and L1 its out- 
er and inner bounding circles, respectively. We take the boundary conditions for the first 
fundamental lXoblem in the usual form 

q)l ( t )  -]- t(pl t ( t )  -}- ~1 ( t )  = ]2 ([) on L2 (1. 1) 

% (t) + t%'(t) + ~l (t) = I t ( t )  q-C1 on L1 (1. 2) 

where % (z) and ~x (z) are the required functions, regular in the domain S,  and]l  (t) 
and [~ (t) are some functions given on the corresponding curves Ll and L2. Examination 
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of this problem from the aspect of the method recommended  earl ier  [3] results in a Fred- 
holm integral  equation for the ~x i l i a ry  density, introduced by observation on tim inner 
or outer boundary of the ring. 

Let us indicate schemat ica l ly  the process of deriving the equation. Writing condition 
(1. 1) on the circle L~ as 

q91 (t) ~ Zt (t) /8 (t), Zi (z) /~2~ = = z ( p ~ ( z ) + ¢ l ( z )  (1.3) 

we introduce the auxiliary function o) (t) on L~ according to the equali ty 

qDi (t) - -  gl  (t) = 2o) (t)- (1 .4)  

A regular function in the ring S 

i ~_ o~ ( t )+  ~/~1~ (t) dt (1. 5) 

E 2 

is analyt ical ly continuable outside the contour L~; it is regular everywhere outside L 1 
and vanishes at infinity. The equality 

t ~ (o(t) +'/21,(t) dt 
q) (z) - -  2~i z t - -  z (1. 6) 

Lt 

is valid outside the contour L2 We analogously couclude that the function 

t ~ --  o) (t) 4- 1/2h (t) dt  
X (z) = Z, (z) - -  ~ o t - - z  (1. 7) 

L, 

is continuable outside the contour L2 and is given outside this contour by the formula 

i I --~°(t)+V~f~(t) dt 
~(z )  = - - - ~ .  t - ~  ( 1. 8) 

Lt 

Converting condition (1. 2) into 

r q~' (t) + Z~ (t) = h (t) + Ct on g t  

and taking into account (1. 6) - -  ( l .  8), we have on L1 

q~ (to) + n ~  -- n22 ¢P' (to----'-] + X (to) = / t  (to) + Ct - -  Eo 

, ,o (,) + (,) d, + R..  , o' (,i (,) dn - -  
2hi ~ t - -  to " t'o 2~i J ~ - -  ~0 

| 

t ( co (~) - -  1/212 (t) d t  
2n~ J ~ - -  Fo 

Lz 

Hence,  after simple computations we find the functions q~ (z) and ~ (z). In order to 
write them in more compac t  form, let us introduce the following quantities (whichthal l  
henceforth be used): 

P (z) ---- P l ( Z )  -~- P~ (z), P , . ( z ) =  p~(1)(Z) -~- Pa(~)(Z) 

Q ( z )  = Q l ( Z ) - ] -  Q~(z) ,  Q~(z)  + Q ~ O ) ( z )  + Q t  ( ' ) ( z )  

G (z) = Go) (z) + G(~) (z), T (z) = TO) (z) + T(') (z) 
The quantities P (z) and Q (z) are regular outside L t  and are given there by 
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1 I /1 (t) Pl  (z) = ~ ~ z dt, 
L~ 

t I [~(t) at p a ) ( z ) = ~  t - , . / ~ , '  
Lz 

t I 1~ (t) Q2 (l) (z) = ~ t - - ~  dt 
L, 

Q~(~) (z) = Ri2-- I~ t 
z 4zti 

The remaining G (z) and T (z) 
ents are 

t ( h ( t )  dt, ~,--  R~ 
Q (z) = -~ t  Jh t -----7 R~ 

P~(~)'(Z) -- 14~i-- ~" I t ~  (t) d.." 

L2 

- -  I I~ (t) dt 
Lt 

(L 9) 

depend on the unknown 00 (t), where their compon- 

t ( C0(t) ./,~ 
G (1)(z) = 2,.  ~. ~ ° ,  a (~)(z) = 

rp (1) t I ~(z) = 2hi ~ dt 
s 

T(2)(z) ~__ Rig--R22 t I - - ~  
z 2n~ dt 

L2 

t -- ~, ( tog (t) dt 2hi ~ t-- zl;~ (i. i0) 

Using the relatiomhips (1. 9) and (1. 10), we arrive at the equalities 

~o (z) = e (z) + G  (z), RI~-  a ~  ~' (z) + x (z) = 0 (z) + r (z) Z 
from which we find for the function 

X (z) = [ Q (z) q- T (z)l R12 -- Rz2 [P '  (z) -q- G' (z)l 

Now passing over to the equality (1.4) on the contour L2 and taking into account 
(1. 6) and (1. 7), we obtain the following integral equation for the demity co (t): 

i ~ co(t) d r +  co (to) = ~ (to) - x (to) + - ~  ~, t 

4m A ( t ) t --'-S'Voo + 

Having performed the computations outlined, we obtain the following integral equation 
for (o (t) : 

t I ~-~(/)dt + B(to) ( 1 . 1 1 )  ¢o (to) = G (to) - -  T (to) - -  ( i  - -  ~) to G' (to) + 
s where R (to) is a known function given by the equality 

R (to) = t '  (to) - -  q (to) - ( i  - X) to P '  (to) + 
t 

L~ 
Certain integrals in the right side o f ( L  11) contain derivatives with respect to the den- 
sity co (t) by performing integration by parts therein, we finally arrive at a Fredholm 
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equation in w (t). 
The density co (t) contained in the integrals of the Fredholm equation (1. 11) is a con- 

tinuous complex function of the complex variable t . Meanwhile the parameter char- 
acterizing the closeness of the ring boundaries is present only in the kernel of the in- 
tegral equation (i. 11). It is difficuR to remove this parameter directly outside the in- 

tegral sign. However, this is done successfully by partitioning the required density into 
a pair of components in conformity with the formula w (t) ---- q~* (t) ~- X* (t), where 
q~* (z) and ~* (z) are some regular functions in a circle bounded by Lg. For such a se- 
paration of the density, aU the integrals mentioned are taken in closed form in terms of 

the composite functions q~* (z) and X* (z) (and their conjugates) of the arguments de- 
pendent on a small parameter, for which it is natural to take the quantity ~ = i -- R I / 
//i. Having computed all the integrals with density w (t) in (1. ]) by such means, let us 
replace the latter by a functional relationship; it is separated into two relations including 
subdivided functions regular inside and outside Li, respectively. In each of these rela- 
tionships such functions can be expanded in series of the small parameter. It turns out 
unexpectedly that a direct comparison of these expansions results, in turn, in an expan- 
sion with initial terms on the order of O (a s) . This suggests that the ~ (z) and V (,) 
sought will grow in absolute value as O (s -s) as the ring becomes thinner. 

A quaiitatively analogous phenomenon (with the confidence of the conclusion made) 
should evidently he observed even in an analysis of the solution,obtained by another me- 
thod, for a ring by means of Fourier series, say. The similar result hence extracted im- 
plies the correctness of the more general method of investigation used earlier, which is 
based on using the Fredholm integral equation. 

Note. A closed circular cyLindrical sheU (of finite length) with free transverse edges 

was considered in [4]. Starting from two-dimensional equations of the general theory, 
the authors showed that the deflection w is on the order of a "~ in this case, i.e. is the 
same as that obtained here for the displacement vector component (the deflection is 
w ---- O (s-l) for sufficiently stiffly clamped sheU edges). 

2. Furthermore, following MnskheLishvili, let us use the form of the solution of the 
problem for a concentric ring in polar coordinates in terms of complex function theory, 
The desired Kolosov-Muskhelishvili functions axe taken in the form of Laurent series 
with coefficients to be determined [5] 

a ) ( , . ) =  F ,  ~ ,  ~'(~)= ~, .~'~ 

where for the externa l  forces given by a genera l  complex  Fourier series, the coeff ic ients  
ah (k = -4- 2, -4- 3, ...) are given by the explicit expmmions 

(~ ÷ .) (A2 - R:) B~ - (R~ ~+~ - A: ~) ~. 

(1 - .,)(R;- R?),-(RI ~ -  R~)(R~ ,~+,- R~,)  
The denominator of this fraction is reduced after some transformations to 

R '  ( i  - ~.), [ ( i  - n') + P .  (~,)I = R '  ( t  - ~.)' q .  CX) (2. ~) 
p .  (~) = (i - x"+b (i - x"-') q . ( x )  = "-~. , - ~ {  i x'  ~' 

~,,-I (1_ ~.), , ..~ (n--  k))~-k \ i _  ~, ] 
k~=1 

= (R, / R~)s 
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Let us briefly clarify the derivation of (2.2). We have directly 
~t n--2 

i 

/ = 0  k = 0  

or, having set e -~- k = k I and omitt ing tile one subscript on the kl, after replacement  
of the second index of summation,  we obtain 

n n-'l-l--2 

Pn(k) - -  t ~,~-1 ~' ~l ~ m~-A ~ 
I ~ 0  R : I  

As is seen, the double summation on the right is taken over integer points of the closed 

parallelogram OABC (Fig. i). Upon a mutual  displacement of the aggregates forming 

n 

/ / -2  
_ _ _ _  E 

B 

I I 

I I 
i 1 

n 2 n - Z  

Fig. 1 

this double series, it is necessary to perform the summation in totality of integer points 
of the triangle OEC, of the paraUelogram ECDA , and then the triangle ABD only 
taking integer points of the common boundaries of adjacent regions once. Doing this 

successively, we find 

vt--2 k n--1 n--t 2n- -2  In 

= -~- /f~---'n--1 / = 1  k~-~n l = k - - ( n - - 2 )  

This last equali ty reduces to a simpler form (since Pt = m t  = l) 
n--2 2 n - - 2  

Furthermore, we convert the first of the sums on the right to the index of summation 
k 1 = - -  (k - -  n + i) which yields 

~t--2 n---1 
i ~C._ ~ ~, (k + ~) ~ = ~, (n - k) ~-~ 

/~=0 /f=-I 

Let us perform the replacement k 1 ~ k - -  rt -~- ] in the second sum, then 

2n- -2  n--1 ~--1 
t (n  -- t )  n (2n - -  k - -  t) ~,~ ----- ~ (n - -  k) ~.~, ~ (n - -  k) - -  

Xn-1 2 
k = n  /~=1 k = l  

We now have 
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n--1 
( t -  n2) + p,, (X) = (t - X)2 ~ ,  (n --  ) X i'-:--Y 

k ~ l  
which agrees with (2.2). 

Under the assumption that the normal and tangential stresses are given on the outer 
and inner circles L2 and /51 by the conditions 

N - - i T  = e i '~  on L~, N - - i T  = 0  on L1 

where n is a fixed positive integer, the required functions appear as 

(1 ) (Z)=  (1- -  ~,)aqn (X) ( t  ÷ n )  ~ 1 - -~ ,  

~.e (Z) -~- t - -  ~n-1 \ Ra/  (t - -~)3q.(~)  L ( j  - -  n)2 j - ~ n - 1  \ ' - ~ 1  - -  

(1 ÷ n) ~ . - ] - - - -~  

Performing all the computations successively (omitted here for brevity), we obtain 

3 -~-28n __[ j  i 2(1 8) nsle_tn~} 
(I)(z) : 2 n 2 (  n _ 1)83{[ 1 t 2 e] eina + 2-- 

3 [A1 (8, 8) e i(n-s)a ÷ As (5, 8) e-i(n-2)g l ~(l~' (z) ÷ ~F (z) = 2 (n - -  t) ns a 

z = R e  ia (R 1 ~ R < Re) 

AI(8, a) = ( t - - 2 8 )  8 + [ ( 2 n - - 3 )  8 2 - ( n - 3 ) 8 - 1 / 3 1 e  ~ + . . .  

= (t - -  28) e - -  [(2n -4- 3 ) $ 2 - -  3 (n  + t ) 8  ÷ 2n ~-------~i] 82 + . . . ,  A2(8,  8) 

8 - -  R ~ - - R  
Re ~ R1 

We hence arrive at the formulas for the principal values of the stress components 

Iv=} 3(t-2~) {2 cos n~ T [cos (n --  2) ~ ÷ cos (n + 2) ~i} (2.3) 
. .6y = 2 n ( n - - t )  e 2 

3 ( t - - 2 8 )  [sin (n - -  2) ~ - -  sin (n ÷ 2) O] 
T x Y ~  2 n ( n - - t ) e  2 

As regards the components of the displacement vector, they retain the order of the 
Goursat function, equal to O (g-s) (because no mutual cancellation of the components 
with the order O (e -s) generaUy occurs in the presence of a constant ~ dependent on 
the elastic properties of the medium in their expressions ; here a direct analogy with 
the results in [1] is observed). 

N o t e .  Let us establish a curious fact. Let us supplement the principal part (extrac- 
ted by the manner mentioned) of the magnitude of any of the stress components with a 
quantity corresponding to the additional component in the external load, which equals 
A m e*me(m =[:= n). Then in the sum comprised of the main component corresponding to 
the external force determined by the quantity • in~ in the boundary condition, and the 
additional component mentioned, the stress component taken can be made to vanish at 

= ~0 by defining the constant A m in the manner needed (~0 is the value of the polar 
angle selected at random). It can happen that the magnitude of the component intro- 
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duced supplementarily takes the value zero; in other words, the added expression (con- 
sidered by itself) itself possesses the required property and, consequently, is sought. 

Now, let the external forces applied to the outer boundary L~ be given by a polyno- 
mial in the form of a finite segment of the Fourier series 

3q 

N - -  i T  ~ Ao ei~°a -~ ~ A~ ei'~a (2.4) 
V=I 

The Av here are real quantities (they can be selected from any kind of reasoning), 
n, are some positive integers (in general, also fixed). We hence have for the principal 
parts of the stress components 

3q 

0 x ~ 

3q 

3q 

In order to extract the first component, let us take Ao = i ,  no = n and h o (no, 0) = 
h (n, 0) ,  l0 (no, 0) = l (n,  0) ,  co0 (no, 0) = co (n, ~ ) ,  respectively. Furthermore, 
let us require that the principal parts of the stress components vanish simultaneously at 
the radial sections 0 = 0~ (v = i ,  . . . ,  q). We hence arrive at the conditions 

3q 

h ( . ,  b.) + Y, = 0 (2. 
I*=-1 
3q 

l (n, Or) q- ~ A ~ l ~  (n~, Or) = 0 (v = t ,  2 . . . .  , q) 

3q 

e (n, ~ )  -4- ~,  A~o~ (n~, @,) = 0 
P~=I 

The relationships obtained form asystem of algebraic equations to determine the con- 
stants A~ (~t ---- t ,  2, . . . ,  3q), which we find under the a~v!mption that the s y s t e m  

determinant is nonzero. When this determinant takes on a zero value, it is necessary to 
set Ao = 0 from the very beginning and then we obtain a homogeneous system of 3q 
equations of the same structure (and with the same determinant) in place of (2, 5). We 
hence find tim required quantities A~ (not all of which are zero) which assure conserva- 
tion of the relationships 

o = = - a  u = "%u =Ola=% (v = t , 2 , . . . , q )  
It is clear from the above that the magnitudes of stress components on the order of 
0 (8 -1) acquire a leading role for 0 = 0~ for a load of type (2.4) with coefficients 
Atx to be determined (as mentioned above). Evidently, by following the same consider- 
atiom we easily see that all three stress components differ not only by the reducedgmwth 
index (for decreasing e) but generally remain bounded in q arbitrarily selected radial 
sections with the polar angles ~I, Os, . . .  Oq. 

The author is grateful to A. L. Gol'denveizer for discussing the research and for useful 
remarks. 
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Exact analytic expression for Green's function of the Helmholtz equation for the 
half-strip and boundary conditions that contain high order derivatives is obtained 
by the method of expansion in terms of plane waves. This problem arises in the 
determination of the acoustic field created by a point source in a plane semi- 
infinite acoustic waveguide with thin elastic walls, and also inside an infinite 
acoustic waveguide with a thin elastic baffle. 

1. S t & t e m 6 n t  o f  t h e  p r o b l s m .  E x a m p 1 8 8 ,  We seek the solution of the 
problem 

(A -~- k ~) P ( x ,  y) = - -  6 ( X - - X o ,  y - -  Yo), O,~x<oo, O < y < h  (1.1) 

L . P ( x , y ~ ) = O ,  O<x<:,o a = t , 2 ;  y l = 0 ,  y2=h (1.2) 

L3P(O, y ) = 0 ,  0 < y < h  (1.3) 

0 0~ 

where P is the acoustic pressure in the medium, A m the Laplace operator, k is the 
wave number, the time dependence is specified by the factor e -i'~t which is omitted 
throughout, m ~  are polynomials of their arguments whose coefficients are indepen- 
dent of space coordinates z and y. In the considered region the sought solution must 
be coGtinuous up to the boundary, with the exception of point. (x 0, Y0) of location of 
the source, and must satisfy the principle of ultimate absorption. 

For the simplest Dirichlet or Neumann boundary "conditions the considered problem 


